Co-Annihilation of Heavy Particles in Thermal Environment

Seyong Kim

Sejong University

based on SK, M. Laine (ITP, U of Bern), JHEP1607(2016)143(arxiv:1602.08105) and arXiv:1609.00474

• chemical equilibriation of heavy quarks in Quark-Gluon Plasma (QGP) ?

• co-annihilation of dark matter in early universe: dark matter decouples when pair annihilation rate is not fast enough to keep up with thermal equilibrium distribution

(1)

 \bullet and rough estimate of decoupling temperature is for dark matter is, Hubble rate \sim co-annihilation rate

$$H \sim n < \sigma v > \rightarrow \frac{T^2}{M_{\rm pl}} \sim (\frac{MT}{2\pi})^{\frac{3}{2}} e^{-\frac{M}{T}} \frac{\alpha^2}{M^2}$$
 (1)
for $\alpha \sim 0.01$, $T \sim \frac{M}{25}$

- "Sommerfeld effect" enhances co-annihilation (heavy quark co-annihilation in QGP and dark matter (WIMP/SIMP) co-annihilation in cosmology) (e.g, Hisano et al, hep-ph/0612049)
- thermal effect (producing mass shift, thermal width, mixing angle modification) can be O(1) effect
- bound states can be disturbed by this O(1) effect
- such effects can be studied through the change of spectral function/or thermal correlator

• for example, modification of heavy quark potential in thermal environment (cf. M. Laine et al, hep-ph/0611300).

$$V(r) = -\alpha_{\rm s} \left[m_{\rm D} + \frac{\exp(-m_{\rm D}r)}{r} \right] \tag{1}$$

and

$$\Gamma(r) = 2\alpha_s T \int_0^\infty dx \frac{x}{(1+x^2)^2} \left[1 - \frac{\sin(xm_D r)}{xm_D r} \right]$$
(2)

Formalism - requirement

• for QCD, non-perturbative definition for the chemical/kinetic equilibriation rate is necessary

• equilibriation rate is a real-time quantity

• lattice gauge theory is a method which can calculate non-perturbative quantities using first principles of quantum field theory

• lattice gauge theory is defined on a Euclidean space and has difficulty in calculating real-time quantity

Formalism - requirement

• the number density (*n*) of heavy quarks or dark matter (Boltzmann equation)

$$(\partial_t + 3H)n \simeq -c(n^2 - n_{eq}^2)$$
 (3)

in linearized form

$$(\partial_t + 3H)n = -\Gamma_{\text{chem}}(n - n_{eq}) + O(n - n_{eq})^2$$
(4)

where $\Gamma_{chem} = 2 cn_{eq}$, chemical equilibriation rate

$\Gamma_{\rm chem}$ as a transport coefficient

• chemical equilibriation as a transport coefficient (D. Bödeker, M. Laine, JHEP07 (2012) 130, 01 (2013) 037)

• treat the approach to the equilibrium as a Langevin process

$$\delta \dot{n}(t) = -\Gamma_{\rm chem} \delta n(t) + \xi(t) \tag{5}$$

$$\langle \langle \xi(t)\xi(t') \rangle \rangle = \Omega_{\text{chem}} \delta(t-t'), \quad \langle \langle \xi(t) \rangle \rangle = 0$$
 (6)

where $\delta n(t)$ is the deviation from the equilibrium and $\xi(t)$ is a stochastic noise

$$\delta n(t) = \delta n(t_0) e^{-\Gamma_{\rm chem}(t-t_0)} + \int_{t_0}^t dt' e^{\Gamma_{\rm chem}(t'-t)} \xi(t')$$
(7)

$\Gamma_{\rm chem}$ as a transport coefficient

- for heavy quarks in QCD, quarkonium decay can be expressed in terms of long distance matrix element times short distance partonic cross section (cf. E. Braate et al, hep-ph/9407339)
- in thermal environment, through linear response theory

$$n_{\rm eq}\Gamma_{\rm chem} = \frac{8\alpha_{\rm s}^2}{M^2} \frac{1}{Z} \sum_m e^{-E_m/T} \langle m | \psi^{\dagger} \chi \chi^{\dagger} \psi | m \rangle$$
 (5)

$\Gamma_{\rm chem}$ as a transport coefficient

• thermal average can be expressed in terms of a Wightman function

$$\begin{split} \gamma &= \frac{1}{Z} \sum_{m} e^{-E_{m}/T} \langle m | \psi^{\dagger} \chi \chi^{\dagger} \psi | m \rangle \\ &= \langle \psi^{\dagger} \chi(0, \mathbf{0}) \chi^{\dagger} \psi(0, \mathbf{0}) \\ &= \int_{\omega, \mathbf{k}} \int_{t, \mathbf{x}} e^{i(\omega t - \mathbf{k} \cdot \mathbf{x})} \langle \psi^{\dagger} \chi(0, \mathbf{0}) \chi^{\dagger} \psi(t, \mathbf{x}) \rangle \end{split}$$
(5)

Γ_{chem} as a transport coefficient

$$\Pi_{<}(\omega, \mathbf{k}) = 2n_{\mathcal{B}}(\omega)\rho(\omega, \mathbf{k}) \sim 2e^{-\omega T}\rho(\omega, \mathbf{k})$$
(5)

for non-relativistic case

$$\omega = 2M + \frac{\mathbf{k}^2}{4M} + \mathbf{E}' \tag{6}$$

and

$$\gamma \sim \left(\frac{MT}{2\pi}\right)^{\frac{3}{2}} e^{-\frac{M}{T}} \frac{\alpha^2}{M^2} \int_{-\Lambda}^{\infty} \frac{dE'}{\pi} e^{-E'/T} \rho(E') \tag{7}$$

Γ_{chem} as a transport coefficient

- compute thermal (full or HTL) gauge field self-energy
- determine corresponding time-order propagator
- Fourier transform of the potential and the width
- solve for the spectral function, $\rho(E') = ImG(E'; \mathbf{0}, 0)$
- laplace transform with weight $e^{-E'/T}$ for $\langle m|O|m\rangle$ (e.g., $O = \psi^{\dagger}\chi\chi^{\dagger}\psi$)

QCD case

QCD case

Z boson exchange: no bound state case

Z' boson exchange: bound states melt below freeze-out

Gluon exchange between gluinos: QCD-like

Conclusion

• a real time quantity, chemical equilibriation rate, is calculated non-perturbatively using Euclidean lattice without analytic continuation

• thermal Sommerfeld effect for bottomonium co-annihilation is calculated using lattice NRQCD and is found to be two orders of magnitude larger than perturbative estimate

• for weak interaction (Z boson exchange), existing conclusion on the Sommerfeld effect is confirmed

• similarly, in "strongly interacting" dark matter scenario, the bound state effect enhances co-annihilation of dark matter far beyond a naive perturbative estimate.