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Decoupling in heavy-ion collisions/cosmology

• chemical equilibriation of heavy quarks in Quark-Gluon Plasma
(QGP) ?

• co-annihilation of dark matter in early universe: dark matter
decouples when pair annihilation rate is not fast enough to keep up
with thermal equilibrium distribution
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Decoupling in heavy-ion collisions/cosmology

• and rough estimate of decoupling temperature is for dark matter is,
Hubble rate ∼ co-annihilation rate
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Decoupling in heavy-ion collisions/cosmology

• “Sommerfeld effect” enhances co-annihilation (heavy quark
co-annihilation in QGP and dark matter (WIMP/SIMP) co-annihilation
in cosmology) (e.g, Hisano et al, hep-ph/0612049)

• thermal effect (producing mass shift, thermal width, mixing angle
modification) can be O(1) effect

• bound states can be disturbed by this O(1) effect

• such effects can be studied through the change of spectral
function/or thermal correlator
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Decoupling in heavy-ion collisions/cosmology

• for example, modification of heavy quark potential in thermal
environment (cf. M. Laine et al, hep-ph/0611300).
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Formalism – requirement

• for QCD, non-perturbative definition for the chemical/kinetic
equilibriation rate is necessary

• equilibriation rate is a real-time quantity

• lattice gauge theory is a method which can calculate
non-perturbative quantities using first principles of quantum field
theory

• lattice gauge theory is defined on a Euclidean space and has
difficulty in calculating real-time quantity
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Formalism – requirement

• the number density (n) of heavy quarks or dark matter (Boltzmann
equation)

(∂t +3H)n ≃−c(n2 −n2
eq) (3)

in linearized form

(∂t +3H)n =−Γchem(n−neq)+O(n−neq)
2 (4)

where Γchem= 2cneq , chemical equilibriation rate
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Γchemas a transport coefficient

• chemical equilibriation as a transport coefficient (D. Bödeker, M.
Laine, JHEP07 (2012) 130, 01 (2013) 037)

• treat the approach to the equilibrium as a Langevin process

δṅ(t) =−Γchemδn(t)+ξ(t) (5)

〈〈ξ(t)ξ(t ′)〉〉=Ωchemδ(t − t ′), 〈〈ξ(t)〉〉 = 0 (6)

where δn(t) is the deviation from the equilibrium and ξ(t) is a
stochastic noise

δn(t) = δn(t0)e
−Γchem(t−t0)+

∫ t

t0
dt ′eΓchem(t

′−t)ξ(t ′) (7)
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Γchemas a transport coefficient

• for heavy quarks in QCD, quarkonium decay can be expressed in
terms of long distance matrix element times short distance partonic
cross section (cf. E. Braate et al, hep-ph/9407339)

• in thermal environment, through linear response theory

neqΓchem=
8α2

s

M2

1
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∑
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Γchemas a transport coefficient

• thermal average can be expressed in terms of a Wightman function

γ =
1

Z
∑
m

e−Em/T 〈m|ψ†χχ†ψ|m〉

= 〈ψ†χ(0,0)χ†ψ(0,0)

=
∫
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∫
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ei(ωt−k·x)〈ψ†χ(0,0)χ†ψ(t,x)〉 (5)
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Γchemas a transport coefficient

Π<(ω,k) = 2nB(ω)ρ(ω,k) ∼ 2e−ωT ρ(ω,k) (5)

for non-relativistic case

ω = 2M +
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Γchemas a transport coefficient

• compute thermal (full or HTL) gauge field self-energy

• determine corresponding time-order propagator

• Fourier transform of the potential and the width

• solve for the spectral function, ρ(E ′) = ImG(E ′;0,0)

• laplace transform with weight e−E ′/T for 〈m|O|m〉 (e.g.,
O = ψ†χχ†ψ)
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QCD case
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QCD case
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Z boson exchange: no bound state case
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Z’ boson exchange: bound states melt below freeze-out
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Gluon exchange between gluinos: QCD-like
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Conclusion

• a real time quantity, chemical equilibriation rate, is calculated
non-perturbatively using Euclidean lattice without analytic continuation

• thermal Sommerfeld effect for bottomonium co-annihilation is
calculated using lattice NRQCD and is found to be two orders of
magnitude larger than perturbative estimate

• for weak interaction (Z boson exchange), existing conclusion on the
Sommerfeld effect is confirmed

• similarly, in “strongly interacting” dark matter scenario, the bound
state effect enhances co-annihilation of dark matter far beyond a naive
perturbative estimate.
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